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Different quasiperiodically and parametrically driven nonlinear oscillators with 
quadratic and cubic nonlinearities are considered, and the corresponding 
homoclinic bifurcation sets in a five-dimensional parameter space are explicitly 
calculated. We classify all these cases into two basic types of homoclinic 
bifurcation sets: the first one corresponds to quasiperiodically driven oscillators 
and the second one corresponds to parametrically driven oscillators. 

Periodically driven nonlinear oscillators have attracted much study in 
the past few years (Moon, 1992). One of the main reasons for this attention 
is the rich dynamic behavior observed in them and the enormous applications 
of these nonlinear oscillators for modeling oscillatory and complex phenom- 
ena in all branches of science. Besides periodically driven nonlinear oscilla- 
tors, much attention also has been paid recently to quasiperiodically and 
parametrically driven nonlinear oscillators (Ide and Wiggins, 1989; Parthasar- 
athy, 1992; McLaughlin, 1981; Koch and Leven, 1985; Wiggins, 1987; Lima 
and Pettini, 1990; Yagasaki, 1992, 1994; Kapitaniak, 1993; Cicogna and 
Fronzoni, 1993; Cuadros and Chac6n, 1993; Kivshar et  al. ,  1994). 

The Melnikov theory is the analytical tool that has been used most in 
order to ascertain the critical parameter values for which a system is expected 
to show chaotic behavior of the Smale-horseshoe type (Wiggins, 1990). In 
spite of the power of the method in predicting the chaotic threshold, it is 
important to note that in practice the true observed threshold is above the 
predicted one and this is mainly due to its intrinsic perturbative nature (Kivshar 
et  al., 1994; Lima and Pettini, 1993; Grauer et  al., 1993). 
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Ide and Wiggins (1989) (referred to as IW) study the homoclinic bifurca- 
tion sets of the quasiperiodically forced Duffing oscillator, and Parthasarathy 
(1992) (referred to as P) does the same for the case of the parametrically 
driven Duffing oscillator. Both of them use basically the same method, i.e., 
they begin by writing the original equation as a set of two coupled first- 
order differential equations in suspended form, then apply the Melnikov 
technique, evaluating the Melnikov function which depends upon the different 
parameters of the original nonlinear oscillator. Finally, a criterion for the 
occurrence of chaos of the Smale-horseshoe type is established for the damp- 
ing coefficient, say k, in such a way that whenever this coefficient is less 
than a critical value kc, then transverse intersections of the stable and the 
unstable manifolds occur, and the attendant chaotic dynamics is expected. 
Both studies construct explicitly the corresponding homoclinic bifurcation 
sets in the five-dimensional parameter space, say (k, ft, f2, tot, to2), where k 
is the damping coefficient, f~ and fz are the respective parameters of the 
forcing, and to~ and toz are the corresponding associated frequencies. This 
homoctinic bifurcation set is given by the four-dimensional surface which is 
obtained through the mathematical condition provided by the Melnikov 
method. In case IW, f~ and f2 represent the two competing quasiperiodic 
external forces, while in case P,f~ andfz represent competition between the 
parametric forcing and the external forcing. 

To represent these bifurcation curves in the to~-to2 plane for a chosen 
set of values of (k, f l , fz)  we define two functions, say Xl(tol) and X2(to2), in 
such a way that the mathematical condition for the threshold of chaotic 
behavior can be rewritten basically as 

- k  +fIXl(tol) + f2X2(to2) = 0 (1) 

Since this equation is linear in fbf2 ,  Xl(to0, and X2(to2), it can be regarded 
as a surface in the five-dimensional (k, f i, f2, to1, to2) space. The bifurcation 
curves in the XI-X2 plane are just lines. Then, using the properties of the 
functions Xl(tol) and X2(to2) and their inverses, it is possible to redraw the 
bifurcation curves in the torto2 plane from the lines in the XI-X2 plane. Finally 
the complete homoclinic bifurcation sets of the corresponding oscillator are 
drawn in the XI-X2 plane and in the toi-to2 plane for the different cases in 
the (k, fl, f2) space. More details concerning this construction can be found 
in Ide and Wiggins (1989) and Parthasarathy (1992). The main difference 
between the two analyses lies in the different nature of the functions Xl(oJl) 
and X~.(to2). While in case P both functions possess different maxima at, say, 
co') and to~, in case IW both functions possess their maxima at the same 
frequency to,,,. This results in some different bifurcations sets in the to~-oJ 2 
plane, along with some additional subcases for case P, as is shown in Parthasar- 
athy (1992). 



Driven Nonlinear Oscillators 1747 

In the present paper we analyze and explicitly calculate the homoclinic 
bifurcation sets for different quasiperiodically and parametrically driven non- 
linear oscillators with quadratic and cubic nonlinearities. We start with the 
Helmholtz oscillator (Rasband, 1987; Thompson, 1989), which is a nonlinear 
oscillator with a quadratic nonlinearity and which appears in different fields 
of science. It possesses a quadratic nonlinearity and also appears in connection 
with steady reductions of some perturbative KdV equations governing nonlin- 
ear waves and solitons (Grimshaw and Tian, 1994; Sanjufin, n.d.; Zimmer- 
mann and Velarde, n.d.). The equation of motion for the parametrically 
driven Helmholtz oscillator with a periodic external forcing and a parametric 
modulation acting in the linear dynamical variable is given by 

X + ~ - et(l + ~ sin oJ2t)x + 13x 2 = F sin tojt (2) 

where ct, 13, "y, k, F, to2, and to~ are positive constants and 0 < ~ -< 1. For 
the unperturbed system, i.e., when ~/= k = F = 0, we obtain the conservative 
Helmholtz oscillator, whose Hamiltonian can be written as 

x2 ~ ~x 3 
HOt, x) = + (3) 

2 2 3 

This system has a center in (ed13, 0) and a saddle in (0, 0) in phase space. 
The equations for the homoclinic orbit are 

213 2[3 tanh2 t (4) 

3 (~3~ l~ sinh{(~4) 'et} 
y,~(t) = - ~  \ - ~ ]  cosh3{(ed4),nt I (5) 

This shows that there are different possible motions. There are bounded 
motions in the interior of the separatrix and there are unbounded motions 
outside the separatrix. The presence of the perturbations added to the oscillator 
causes the stable and unstable manifolds to be destroyed, giving rise to the 
possibility of chaotic solutions. We are interested in the calculation of  the 
Melnikov distance A(t0) for the case in which all the perturbations are consid- 
ered. A transformation of  k, % and F into ek, e'y, and eF is done in order to 
apply the first-order perturbation scheme of the Melnikov theory. Equation 
(2) may be written as 

~ = y  

5, = ax  - 13 x2 + e{F sin oJit + tx~/xs~(t)sin to2t - kysx(t)} (6) 
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The Melnikov distance is evaluated as 

A(to) = f+~ y~x(t){F sin tot(t + to) + e~3'x,.x(t)sin o~(t + to) - /,y.~x(t)} dt 

(7) 

which can be written in two parts, Ao(to) and A~(to). The first term corresponds 
to the case in which there is only external forcing, while the second term is 
the contribution of  the parametric forcing. The computation of the Melnikov 
distance then gives 

A(to) = Ao(to) + A-~(to) 

6"rr to2F cos tOlto 6a  5n 3rra 2 to~y cos tOzto 
- - - - k +  

13 sinh[rr(4/cx)t/zo~t/2] 5132 2[3 2 sinh[w(4/c~)lnto2/2] 

{ 4 + - ~ }  (8) 

The condition for transverse intersection and chaotic separatrix motion holds 
when A(to) changes sign at some to (Wiggins, 1990). This criterion for the 
appearance of  chaos can be finally written, for the case in which a = 13 = 
1, in the form 

5"rrF~o~ 5-rr~/o~ 2 
k <--- kc - + {4 + co2} (9) 

sinh('rrtol) 4 sinh('rrto2) 

If we def inef l  = 5"rrF, f2 = 5'rr-,//4, Xl(tol) = to~/sinh('rrtol), and X2(to2) = 
to~{4 + co~}/sinh('rr~2), then this last equation can be rewritten in the form 

- k  + ftXl(~l) + f2X2(o~2) = 0 (10) 

which is formally the same as equation (A.1) of Ide and Wiggins (1989) or 
equation (7b) of Parthasarathy (1992). It can be easily seen that the functions 
Xl(tol) and X2(~oz) so defined have different maxima at different values of  
the frequencies, thus resulting in type P. This can be observed in Fig. 1. 
Figure l a represents the plots of  Xj(to~) and X2(to2), showing their respective 
maxima X'l and X~ at different frequencies col and to~, while their inverses 
can be observed in Fig. lb. The remaining analysis of the homoclinic bifurca- 
tion sets for the parametrically driven Helmhottz oscillator is then qualitatively 
the same as the one given by Parthasarathy (1992). This is due to the similitude 
of the problem and also to the qualitative nature of  the analysis carried 
out there. 

We consider now another example related to the problem just analyzed. 
Instead of  the parametric drive on the dynamic variable, we add another 
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Fig. 1 (a) Plots of the auxiliary functions Xi(to~) and X2(~_) and (b) their inverses. The 
most important feature is that the two functions have maxima at different frequencies. 

external periodic forcing in such a way that the equation of  motion of  the 
quasiperiodically forced Helmholtz oscillator becomes 

Y + k.2 - x + x z = f t  sin tolt + f 2  sin to2t (11) 

The expression for the bifurcation set obtained through the Melnikov analysis 
is given by 

- k  + 5"n'fito~ csch('rreo2) + 5'rrf2to~ csch('n'o~2) = 0 (12) 

which is qualitatively identical to the expression found in Ide and Wiggins 
(1989), implying that the homoclinic bifurcation curves are identical. 

Besides the cases of  nonlinear oscillators we have considered so far, we 
analyze the parametrically driven Duffing oscillator (Cicogna and Fronzoni, 
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1993; Cuadros and Chac6n, 1993), in which both the linear and the nonlinear 
dynamical variables are modulated. The equation of motion reads 

X + k.,t - (1 + El sin f~lt)x + (1 + e3 sin ~'~3/)X 3 = F sin tot (13) 

The computation of the Melnikov function, which provides the equation of 
the bifurcation set, gives 

(..~_) 4k 
A(t0) = v/-2F'rrto sech arto sin to t  0 - -  ~ -  

• {~f~,~ 
+ "rr~,.Q~ cscnt--~--) sin D., to-  

-rr~D.-~(D.] + 4) /'rrD.,~ 
6 " c s c h t - - ~ )  sin O't° 

(14) 
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Different possibilities can exist here, with the constraint of a five-dimensional 
parameter space. Our possibility is the one considered by Parthasarathy 
(1992). Another one is when we take into account the external forcing and 
the parametric forcing acting in the cubic term. The equation of the bifurcation 
set resulting from this case is of the same kind. If only both parametric 
forcings are acting, with no external forcing, the result is also of the same kind. 

A similar expression is obtained for the case of the parametrically driven 
Helmholtz oscillator in which both the linear and the nonlinear components 
are modulated. 

After having considered all the different cases of nonlinear oscillators 
with quadratic and cubic nonlinearities presented here, we can conclude that 
there exist two basic types of homoclinic bifurcation sets, type IW and type 
P. If we have a quasiperiodically driven nonlinear oscillator, we obtain a 
bifurcation set from which a homoclinic bifurcation set of type IW is derived. 
However, if we consider the parametric drive of one component of the state 
variable, the linear or the nonlinear, along with the external forcing, or just 
the parametric drive of both state variables without the external forcing, then 
the homoclinic bifurcation set for the nonlinear oscillator is of type P. This 
is nothing strange, because the calculation of the bifurcation set depends 
directly on the computation of the Melnikov integral. For the quasiperiodically 
driven systems this integral involves integrands of the same nature, and this 
is why the result is of type IW. For the parametrically driven systems, the 
Metnikov integral involves terms of a different nature, since the parametric 
terms involve the state variable, resulting then in a bifurcation set of type P. 
As a consequence of this analysis, we conclude that there are two basic types 
of homoclinic bifurcation sets, one which corresponds to quasiperiodic forcing 
and the other which corresponds to parametric forcing. 
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